Leipzig: Bartholf Senff, no date, — 107 p.
Full title:
Alte Claviermusik, in chronologischer Folge neu herausgegeben und mit Vortragszeichen versehen.
18 Piano pieces, by various composers, edited by Ernst Pauer. With bookmarks.
Note: the table of contents on the cover is not correct. This is the correct table of contents:
G. Frescobaldi: Canzona und Corrente
J. Loeillet (formerly attributed to Lully): Allemande, Sarabande und Gigue
N. Porpora: 2 Fugen
F.X. Murschhauser: Aria Pastoralis Variata
W.F. Bach: Capriccio
J.E. Eberlin: Preludium und Fuge
C. Nichelmann: La Gaillarde et la Tendre (Sarabande et Gigue)
G. Benda: Sonata (no. 5)
J.E. Bach: Fantasie et Fugue
J.C.F. Bach: Rondeau
J.C. Bach: Sonata (no. 6, Op.17)
J.F Krebs: Fuga in F
F.W. Marpurg: Praeludium und Capriccio
J. Ph. Kirnberger: Gigue, Gavotte, Courante und Allegro für die Singuhr
H. DuMont: Suite de Pièces
J. Champion de Chambonnières: La Rare, Courante, Sarabande und La Loureuse
F. Couperin: La Favorite, La tendre Nanette und La Tenebreuse
John Napier, 1614RecognitionComputing with Logarithms
Financial MattersTo the Limit, If It ExistsSome Curious Numbers Related to e
Forefathers of the CalculusPrelude to BreakthroughIndivisibles at Work
Squaring the HyperbolaThe Birth of a New ScienceThe Great ControversyThe Evolution of a Notation
ex: The Function That Equals Its Own DerivativeThe Parachutist
Can Perceptions Be Quantified?
eθ: Spira MirabilisA Historic Meeting between J. S. Bach and Johann Bernoulli
The Logarithmic Spiral in Art and Nature
(ex + e-x)/2: The Hanging ChainRemarkable Analogies
Some Interesting Formulas Involving e
eix: "The Most Famous of All Formulas"A Curious Episode in the History of e
ex+iy: The Imaginary Becomes RealBut What Kind of Number Is It?AppendixesSome Additional Remarks on Napier’s Logarithms
The Existence of lim (1 +1/n)
n as n → ∞
A Heuristic Derivation of the Fundamental Theorem of Calculus
The Inverse Relation between lim (b
h-1)/h = 1 and lim (1+h)
1/h = b as h → 0
An Alternative Definition of the Logarithmic Function
Two Properties of the Logarithmic Spiral
Interpretation of the Parameter φ the Hyperbolic Functions
e to One Hundred Decimal Places