Зарегистрироваться
Восстановить пароль
FAQ по входу

Pauer, Ernst (Ed.). Alte Claviermusik in chronologischer Folge

  • Файл формата pdf
  • размером 5,40 МБ
  • Добавлен пользователем
  • Описание отредактировано
Pauer, Ernst (Ed.). Alte Claviermusik in chronologischer Folge
Leipzig: Bartholf Senff, no date, — 107 p.
Full title: Alte Claviermusik, in chronologischer Folge neu herausgegeben und mit Vortragszeichen versehen.
18 Piano pieces, by various composers, edited by Ernst Pauer. With bookmarks.
Note: the table of contents on the cover is not correct. This is the correct table of contents:
G. Frescobaldi: Canzona und Corrente
J. Loeillet (formerly attributed to Lully): Allemande, Sarabande und Gigue
N. Porpora: 2 Fugen
F.X. Murschhauser: Aria Pastoralis Variata
W.F. Bach: Capriccio
J.E. Eberlin: Preludium und Fuge
C. Nichelmann: La Gaillarde et la Tendre (Sarabande et Gigue)
G. Benda: Sonata (no. 5)
J.E. Bach: Fantasie et Fugue
J.C.F. Bach: Rondeau
J.C. Bach: Sonata (no. 6, Op.17)
J.F Krebs: Fuga in F
F.W. Marpurg: Praeludium und Capriccio
J. Ph. Kirnberger: Gigue, Gavotte, Courante und Allegro für die Singuhr
H. DuMont: Suite de Pièces
J. Champion de Chambonnières: La Rare, Courante, Sarabande und La Loureuse
F. Couperin: La Favorite, La tendre Nanette und La Tenebreuse
John Napier, 1614
Recognition
Computing with Logarithms
Financial Matters
To the Limit, If It Exists
Some Curious Numbers Related to e
Forefathers of the Calculus
Prelude to Breakthrough
Indivisibles at Work
Squaring the Hyperbola
The Birth of a New Science
The Great Controversy
The Evolution of a Notation
ex: The Function That Equals Its Own Derivative
The Parachutist
Can Perceptions Be Quantified?
eθ: Spira Mirabilis
A Historic Meeting between J. S. Bach and Johann Bernoulli
The Logarithmic Spiral in Art and Nature
(ex + e-x)/2: The Hanging Chain
Remarkable Analogies
Some Interesting Formulas Involving e
eix: "The Most Famous of All Formulas"
A Curious Episode in the History of e
ex+iy: The Imaginary Becomes Real
But What Kind of Number Is It?
Appendixes
Some Additional Remarks on Napier’s Logarithms
The Existence of lim (1 +1/n)n as n → ∞
A Heuristic Derivation of the Fundamental Theorem of Calculus
The Inverse Relation between lim (bh-1)/h = 1 and lim (1+h)1/h = b as h → 0
An Alternative Definition of the Logarithmic Function
Two Properties of the Logarithmic Spiral
Interpretation of the Parameter φ the Hyperbolic Functions
e to One Hundred Decimal Places
  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация