Addison-Wesley Professional, 2003. — 306 p.
These are the timesaving techniques relished by computer hackers--those devoted and persistent code developers who seek elegant and efficient ways to build better software. The truth is that much of the computer programmer's job involves a healthy mix of arithmetic and logic. In "Hacker's Delight," veteran programmer Hank Warren shares the tricks he has collected from his considerable experience in the worlds of application and system programming. Most of these techniques are eminently practical, but a few are included just because they are interesting and unexpected. The resulting work is an irresistible collection that will help even the most seasoned programmers better their craft.
Topics covered include: A broad collection of useful programming tricks Small algorithms for common tasksPower-of-2 boundaries and bounds checkingRearranging bits and bytesInteger division and division by constantsSome elementary functions on integersGray codeHilbert's space-filling curveAnd even formulas for prime numbers!
This book is for anyone who wants to create efficient code. "Hacker's Delight" will help you learn to program at a higher level--well beyond what is generally taught in schools and training courses--and will advance you substantially further than is possible through ordinary self-study alone.
This book does not deal with large tricks such as sophisticated sorting and compiler optimization techniques. Rather, it deals with small tricks that usually involve individual computer words or instructions, such as counting the number of 1-bits in a word. Such tricks often use a mixture of arithmetic and logical instructions.
It is assumed throughout that integer overflow interrupts have been masked off, so they cannot occur. C, Fortran, and even Java programs run in this environment, but Pascal and ADA users beware!
The presentation is informal. Proofs are given only when the algorithm is not obvious, and sometimes not even then. The methods use computer arithmetic, "floor" functions, mixtures of arithmetic and logical operations, and so on. Proofs in this domain are often difficult and awkward to express.
To reduce typographical errors and oversights, many of the algorithms have been executed. This is why they are given in a real programming language, even though, like every computer language, it has some ugly features. C is used for the high-level language because it is widely known, it allows the straightforward mixture of integer and bit-string operations, and C compilers that produce high-quality object code are available.
Occasionally, machine language is used. It employs a three-address format, mainly for ease of readability. The assembly language used is that of a fictitious machine that is representative of today's RISC computers.
Branch-free code is favored. This is because on many computers, branches slow down instruction fetching and inhibit executing instructions in parallel. Another problem with branches is that they may inhibit compiler optimizations such as instruction scheduling, commoning, and register allocation. That is, the compiler may be more effective at these optimizations with a program that consists of a few large basic blocks rather than many small ones.